CHARLES' LAW

Name ____

Charles' Law states that the volume of a gas varies directly with the Kelvin temperature, assuming that pressure is constant. We use the following formulas:

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \quad \text{or} \quad V_1 \times T_2 = V_2 \times T_1$$

$$K = {^{\circ}C} + 273$$

Solve the following problems assuming a constant pressure.

- A sample of nitrogen occupies a volume of 250 mL at 25° C. What volume will it occupy at 95° C?
- 2. Oxygen gas is at a temperature of 40° C when it occupies a volume of 2.3 liters. To what temperature should it be raised to occupy a volume of 6.5 liters?
- 3. Hydrogen gas was cooled from 150° C to 50° C. Its new volume is 75 mL. What was its original volume?
- 4. Chlorine gas occupies a volume of 25 mL at $3\overline{0}0$ K. What volume will it occupy at 600 K?
- 5. A sample of neon gas at $5\bar{0}^\circ$ C and a volume of 2.5 liters is cooled to 25° C. What is the new volume?
- 6. Fluorine gas at $30\bar{0}$ K occupies a volume of $50\bar{0}$ mL. To what temperature should it be lowered to bring the volume to $30\bar{0}$ mL?
- 7. Helium occupies a volume of 3.8 liters at -45° C. What volume will it occupy at 45° C?
- 8. A sample of argon gas is cooled and its volume went from $38\bar{0}$ mL to $25\bar{0}$ mL. If its final temperature was -55° C, what was its original temperature?